

Features

- UL, CB, CE, EMC Approved
- RoHS directive compliance
- Encapsulated, compact case
- High efficiency
- Universal input(AC85~264V or DC110~340V)
- Surface mounting technology
- · Built in EMI filter
- Inrush current limit
- 67kHz fixed frequency
- Fixed output voltage
- Thermal shutdown(IC-Temp: 140°C Min.)
- Low output ripple & noise
- Isolated input-output(3kVAC)
- Output short circuit protection
- Over voltage protection(O.V.P.)
- Over current protection(O.C.P.)
- 2Years warranty

Environmental

- Operating temperature range: -10℃~60℃
- Storage temperature range: -20°C~70°C
- Humidity: 20%~90%RH
- Vibration: 10-55Hz at 10G(98m/s²),
 3minutes period, 60minutes each one X, Y and Z axis
- Impact: 50G(490m/s²), 11ms, once each
- Cooling method: natural air convection
- MTBF(MIL-HDBK-217F): 3.5*10⁵hours

Safety

- •UL (UL60950, CSA C22.2 NO.60950)
- •UL No: E227474
- •CE(EN60950)/CB(IEC60950)-through TÜV
- *To meet the standard of EN61204-3 class B, Use the external noise-filter between L and N (refer to manual)

Description

The FS10 Series has universal AC input and there are 5 models with single output. And 2models with dual output. And 2models with triple output. compact size with high reliability are achieved.

A built in EMI filter is reduced the noise level.

Electrical specifications						
INPUT	Voltage	AC85~264V (or DC 110~340V) 50/60Hz (note)				
	Current	0.25A Max. @ 110VAC / 0.13A Max. @ 220VAC				
	Frequency	47~440Hz Max. (50~60Hz typ.)				
	Efficiency	73% Typ.				
	Inrush current (at cold start)	30A Max. @ 120VAC. / 60A Max. @ 240VAC				
	Leakage current	0.5mA Max. @ 110VAC / 0.75mA Max. @ 220VAC				

	Voltage tolerance (accuracy)	±2% Max.		
OUTPUT		±3% Max(complementary dual).		
	Ripple and noise	±1% Typ.		
	Line regulation	±1% Typ.		
	Load regulation	±1% Typ.@output1 / ±2% Typ.@output2,3		
	Dynamic load regulation	±3% Typ.@output1		
	Temperature regulation	±1% Typ.		
	Rising time	400ms Max.		
	Hold up time	10ms Min.		

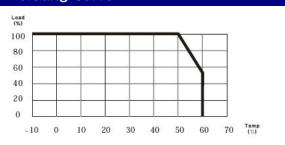
Protection circuit	Protection circuit				
Over current protection	Works at over 105% of rating & recovers automatically				
Over temperature protection	PWM IC-Temperature 140℃ Min. Latching, Recovering				

Isolation specifications			
Isolation Resistance	DC 500V, 100MOhms Min.		
Input-Output Isolation Voltage	AC 3KV, 1minute, 10mA.		

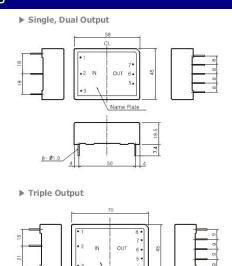
General specifications			
Switching frequency	67kHz		
Calculated MTBF	3.5*10 ⁵ hrs		
Weight	90g or less(single, dual), 100g or less(triple)		

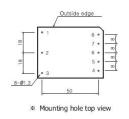
NOTE: For cases that conform various safety specifications(UL, CSA, CE, CB etc). It require input voltage and frequency range will be 100-240Vac, 50~60Hz.

Ordering information

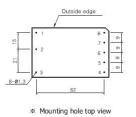


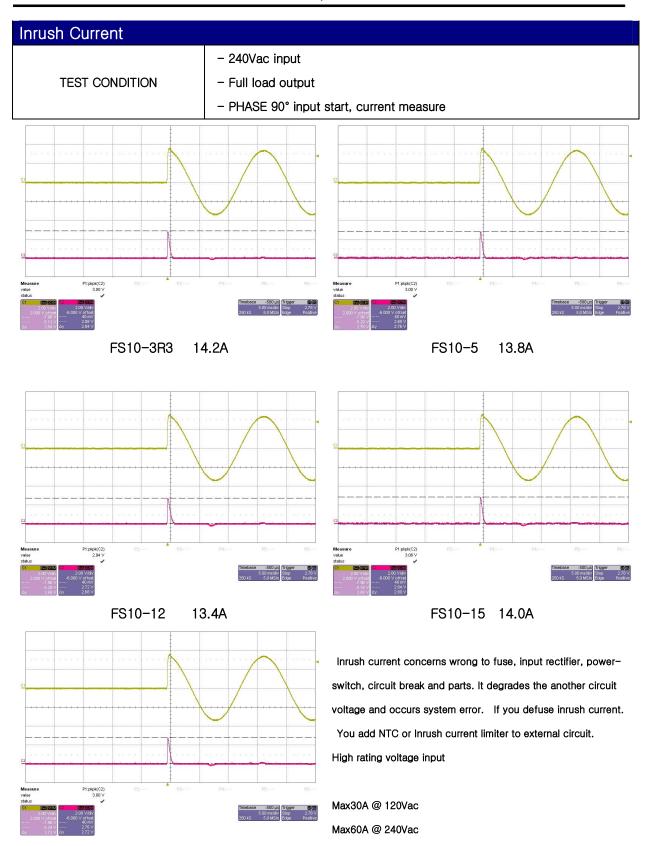
Input	Output1 Output2	Output?	Output3	Maximum	Ripple	Efficiency	Model
Input		Outputs	power	& Noise	typical	number	
	3.3V@2.0A			6.6W	80mVp-p	73%	FS10-3R3
	5V@2.0A			10.0W	80mVp-p	73%	FS10-5
	12V@0.9A			10.8W	120mVp-p	75%	FS10-12
AC85~264V	15V@0.7A			10.5W	150mVp-p	75%	FS10-15
or	24V@0.45A			10.8W	200mVp-p	75%	FS10-24
DC110~340V	+12V@0.45A	-12V@0.45A		10.8W	120/120mVp-p	75%	FSD10-1212
	+15V@0.35A	-15V@0.35A		10.5W	150/150mVp-p	75%	FSD10-1515
	5V@1.5A	+12V@0.15A	-12V@0.15A	11.1W	80/120/120mVp-p	75%	FST10-522M
	5V@1.5A	+15V@0.12A	-15V@0.12A	11.1W	80/150/150mVp-p	75%	FST10-5FFM


Pin assignments


Single output	Duai output	i ripie outpu
1. FG	1. FG	1. FG
2. AC(N)	2. AC(N)	2. AC(N)
3. AC(L)	3. AC(L)	3. AC(L)
4. No pin	4. No pin	4. Output1
5. Output1	Output1	5. GND
6. No pin	6. GND	6. Output2
7. GND	7. Output2	7. GND
8. No pin	8. No pin	8. Output3

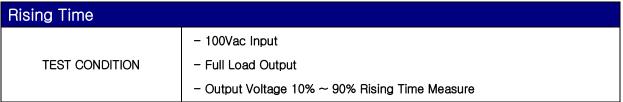
Derating curve

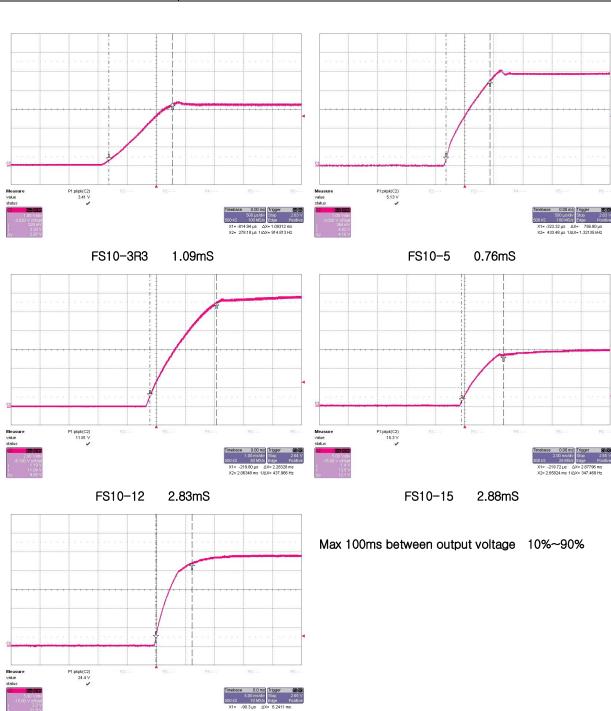

Dimensions



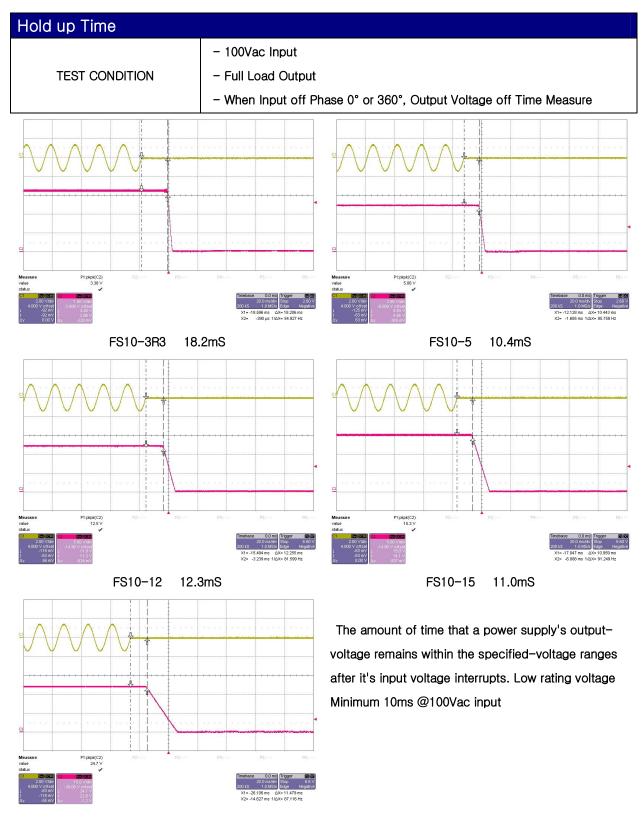
NOTES

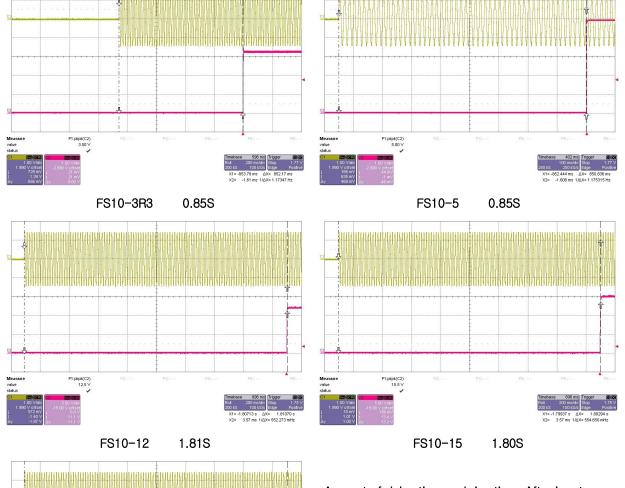
- 1. All dimensions are mm.
- 2. Weight: 90g or less (single, dual) 100g or less (triple)



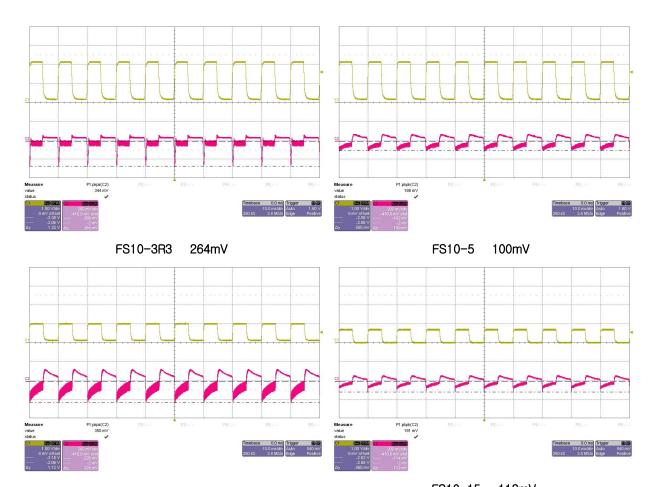


FS10-24 13.6A




FS10-24 6.24mS

Start up Time			
	- 100Vac Input		
TEST CONDITION	- Full Load Output		
	-When Input on Phase 360°, Output Voltage 100% rise Time Measure		



FS10-24 1.81S

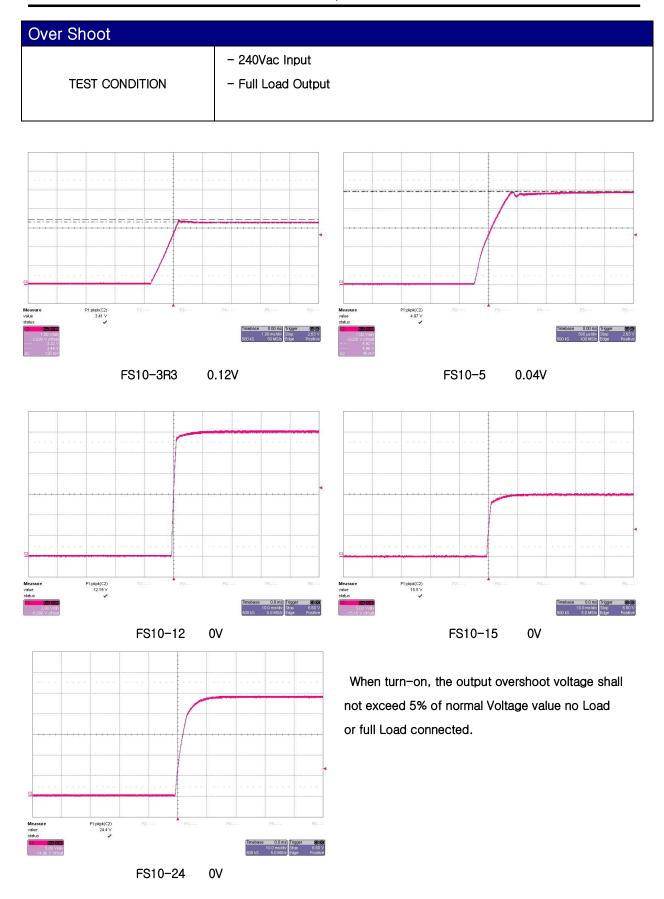
Amount of delay time and rise time. After input-voltage injects.

Dynamic Load Regulation			
	- 100Vac Input		
TEST CONDITION	- 0% Load ~ 100% Load Output		
	- Freq.: 100Hz, - Duty: 0.5		

Measure P1:pip(C2) P2... P3... P4... P5... P5...

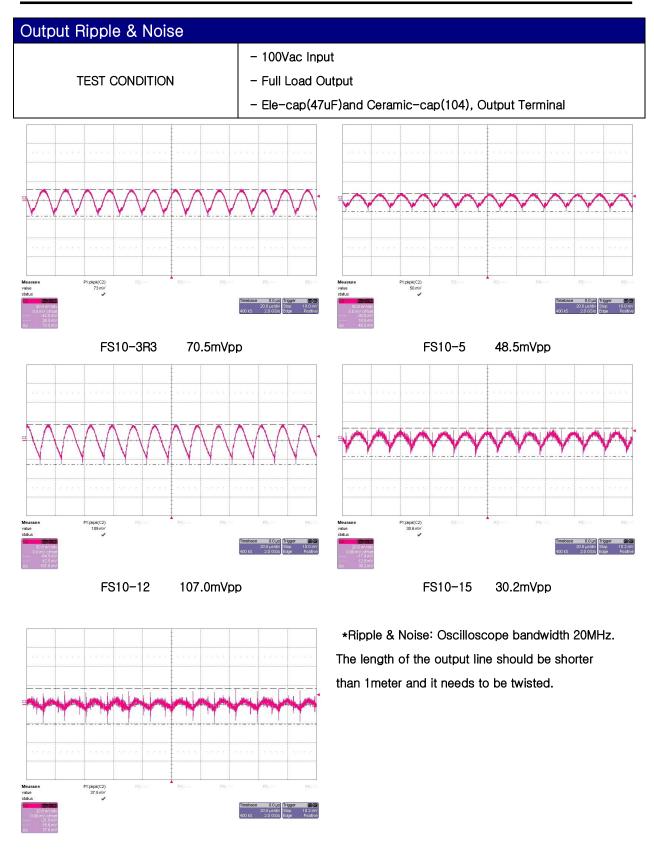
224mV

FS10-12

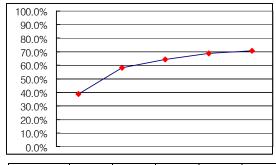

FS10-24 96mV

FS10-15 112mV

Considerate slew rate and frequency within $\pm 3\%$ output voltage value. Except FS10-3R3 is within $\pm 5\%$ output voltage value.

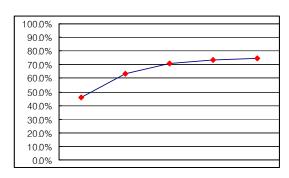

With Your Electronics POWERPLAZA www.powerplaza.co.kr

With Your Electronics POWERPLAZA www.powerplaza.co.kr

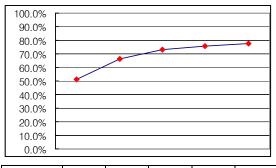


FS10-24 37.6mVpp

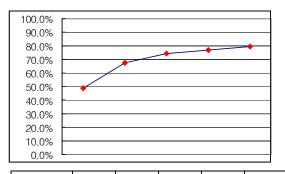
With Your Electronics POWERPLAZA www.powerplaza.co.kr



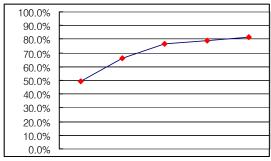
Efficiency Curve(Load Variation)


Load(%)	10	25	50	75	100
Eff(%)	38.9	58.3	64.6	68.8	70.4

FS10-3R3 / 3.3V 2.0A


Load(%)	10	25	50	75	100
Eff(%)	45.8	63.6	71.1	73.4	74.5

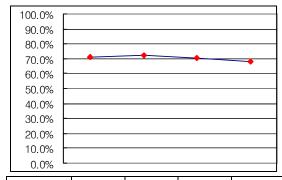
FS10-5 / 5V 2.0A


Load(%)	10	25	50	75	100
Eff(%)	51.0	66.2	73.2	75.7	77.5

FS10-12 / 12V 0.9A

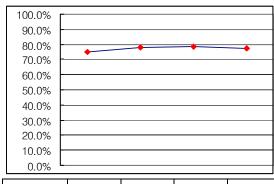
Load(%)	10	25	50	75	100
Eff(%)	49.0	67.5	74.6	76.9	79.2

FS10-15 / 15V 0.7A

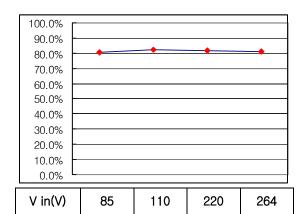

Load(%)	10	25	50	75	100
Eff(%)	49.3	66.2	76.6	79.3	81.4

FS10-24 / 24V 0.45A

Input 220Vac, Variation of efficiency, from minimum load to maximum load.



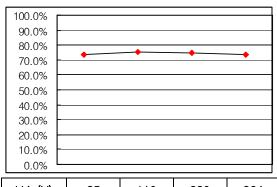
Efficiency Curve(Input Voltage Variation)


V in(V)	85	110	220	264
Eff(%)	70.8	72.3	70.4	68.1

FS10-3R3 / 3.3V 2.0A

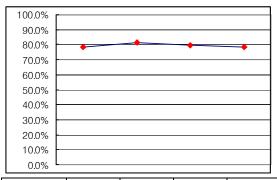
V in(V)	85	110	220	264
Eff(%)	75.1	78.0	78.3	77.4

FS10-12 / 12V 0.9A


82.4 FS10-24 / 24V 0.45A

81.8

80.9


80.6

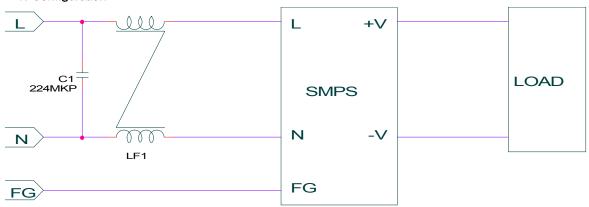
Eff(%)

V in(V)	85	110	220	264
Eff(%)	73.5	75.3	74.7	73.7

FS10-5 / 5V 2.0A

V in(V) 85		110	220	264
Eff(%)	78.2	81.2	79.5	78.4

FS10-15 / 15V 0.7A


Variation of Efficiency, from Minimum input Voltage to Maximum input Voltage

Electro Magnetic Interference Application.

FS10 Series is needs to reduce Electromagnetic Interference, use the external L-C noise filter at the input of the Converter.

1. Configuration

2. Components

LF1 = 20mH Common Mode Line Filter, Toroidal core \$\phi14.0mm\$

C1 = 220nF / 275Vac, X2 Capacitor

Calculating Reliable Values of MTBF

1. Calculating method

Calculated based on part count reliability projection of MIL-HDBK-217F Individual failure rates λg is given to each part and MTBF (Mean Time Between Failure) is calculated by the count of each part.

<Formula>:

n

MTBF = 1/ λ epuip = 1/ $(\Sigma Ni(\lambda G \Pi Q)i *10^6 (Hours)$ i=1

λequip : Total Equipment Failure Rate (Failure/10⁻⁶Hours)

λG : Generic Failure Rate for The ith Generic Part (Failure/ 10⁻⁶Hours)

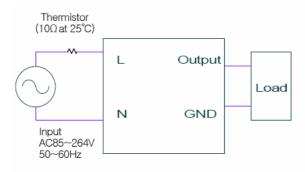
ΠQ : Generic Quality Factor for The ith Generic Part (ΠQ=1)

Ni : Quantity of ith Generic Part

n : Number of Different Generic Part Categories

2. MTBF Values

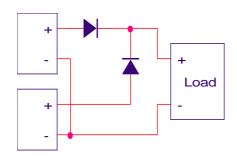
PART	Number	Failure Rate	Failure Rate*n	Remark
	n	λG(F/T)	λG×n(F/T)	
Logic IC	1	0.03600	0.03600	Separate
Transistor, FET	1	0.49500	0.49500	Separate
Diode Fast Recovery	2	0.12650	0.25300	
Diode General Purpose	1	0.01980	0.01980	
Diode Switching	1	0.00517	0.00517	
Diode Bridge	1	0.01980	0.07920	*4
Voltage Regulator	1	0.02400	0.02400	
Photo-coupler	1	0.14850	0.14850	
Thermister	1	0.01400	0.01400	
Capacitor-ele	5	0.01900	0.09500	
Capacitor-film	1	0.00700	0.00700	
Capacitor-ceramic	4	0.02600	0.10400	
Capacitor-MLCC	3	0.05300	0.15900	
Choke coil	1	0.00022	0.00022	
Switching trans	1	0.00420	0.00420	
Line Filter	1	0.00440	0.00440	
Resistor Chip	13	0.01600	0.20800	
Connector	5	0.05200	0.26000	
Reflow soldering	48	0.00014	0.00672	
Flow soldering	56	0.00780	0.43680	
PCB	1	0.37000	0.37000	
Fuse	1	0.01000	0.01000	
Total Equipment Failure Rate λG×n(F/T)			2.74001	
MTBF = $10^{6} / \lambda G(F/T)$			364962.1717	



Reliability Specification	Standard	Remarks
Dry heat	IEC60068-2-2	
Cold	IEC60068-2-1	
Thermal shock	IEC60068-2-14	
Temperature, humidity cycle	IEC60068-2-30, IEC60068-2-38	
Vibration	IEC 60068-2-6	
Mechanical shock	IEC 60068-2-27	
Electrostatic Discharge immunity	IEC 61000-4-2	
Immunity to radio frequency EM-fields	IEC 61000-4-3	
Electrical fast transient/burst immunity	IEC 61000-4-4	
Surge immunity	IEC 61000-4-5	
B10 Life test	B10 Life is the time by which 10% of the product population will get failed	

Instruction manual

1. Basic connection


NOTE: To avoid excessive voltage drop and for Improved noise, short and thick wire should be used to connect the load. Length below 50Cm & wire thickness of 4.0A/mm² are recommended for reducing wire loss when wire connection is necessary.

To Protect large input inrunsh Current, thermistor should be used at input line of the converter (10D-9)

2. Parallel Operation

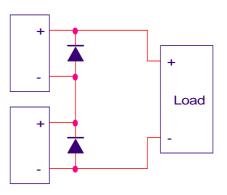
This supply can be operated the following ways.

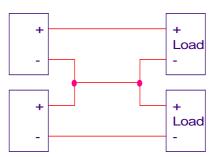
Choose a diode in accordance with voltage, power dissipation and heat radiation.

- Voltage : $V > Vo \times 3$

- Current : $I > lo \times 3$

 Design a proper heat sink according to power loss at diode (Pw = VF x Io) Use a schottky or fast recovery diode this has a low VF.


3. Series Operation


Choose a diode in accordance with voltage, power dissipation and heat radiation.

- Voltage : $V > Vo \times 3$

- Current : I > Io x 3

- Design a proper heat sink according to power loss at diode (Pw = Vf x Io).
- Use a schottky or fast recovery diode this has a low VF.

4. Over Current Protection

The FS10 Series is equipped with an over current protection circuit. When the short or overload condition is removed, the output will automatically recover. This setting is fixed and cannot be varied externally. If the short or overload condition continues, the power module could be damaged due to the heat condition.

5. Over Voltage Protection

FS10 series are equipped with an over-voltage protection circuit by zener diode. If zener diode is opened, Vcc rise up, it becomes possible to implement an over voltage protection. Ratch on mode. If zener diode is short, output is shorted.

It becomes possible to implement a short circuit Protection.

6. Over Temperature Protection

Temperature protection is provided by a precision analog circuit that turns the output MOSFET off when the junction temperature exceeds the thermal shutdown temperature (140°C Minimum). When the junction temperature cools to below the hysteretic temperature, normal operation resumes providing automatic recovery.

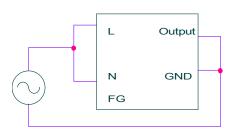
7. Line Regulation

Maximum line regulation is maximum output voltage change when the input volt is slowly varied with in the input voltage range.

8. Load Regulation

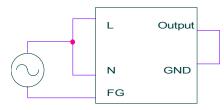
Maximum load regulation is maximum output voltage value change when varying the load current slowly within the standard output current range.

9. Isolation Resistance

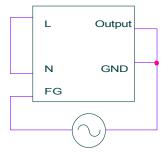

The isolation resistance is more than $100M\Omega$ at 500VDC when tested with DC isolation between the output and the case. Make sure that during testing, the isolation tester does not produce a high pulse when the applied voltage is varied. Ensure that the tester is fully discharged after the test.

10. Withstand Voltage

FS10 series are designed to withstand 3KVAC (20mA) 1 minute between input output for the withstand voltage test, 2KVAC(20mA) 1 minute between input-FG, and 500VAC(100mA)1 minute between output-FG. The applied voltage must be increased gradually from zero to the testing value, and then decreased gradually at shut down.


Especially stay away from use of a timer. Where a pulse of several times the applied voltage can be generated.

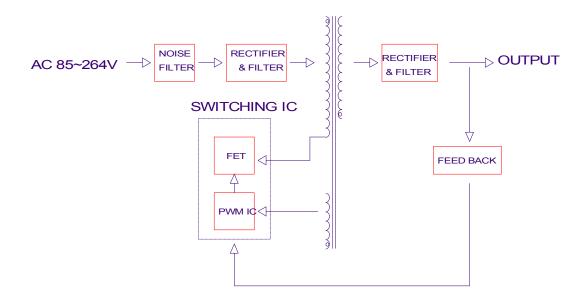
INPUT-OUTPUT


3KVAC, one minute, 10mA

INPUT-FG

2KVAC, one minute, 10mA

OUTPUT-FG


500VAC, one minute, 10mA

11. Block Diagrams

Circuit topology: Fly-back

Switching frequency: 67KHz(fixed)

Power Plaza co., Ltd

#1401, Daeryung Techno Town 493-6

Gasan-Dong, Kumchon-Gu, Seoul, 153-774,

Korea

Tel: 82_2_855_4955 Fax: 82_2_855_4954

E-mail: sales@powerplaza.co.kr